Puerarin Attenuates Anoxia/Reoxygenation Injury Through Enhancing Bcl-2 Associated Athanogene 3 Expression, a Modulator of Apoptosis and Autophagy

نویسندگان

  • Yayu Ma
  • Ya Gai
  • Jingpeng Yan
  • Jian Jian
  • Yangyang Zhang
چکیده

BACKGROUND Puerarin has protective effects on ischemia-reperfusion injury, but the underlying mechanisms are not fully revealed. This study explored the effect of puerarin on the expression of Bcl-2 associated athanogene 3 (BAG3) in an in vitro model of anoxia/reoxygenation injury (A/RI) in neonate rat primary cardiomyocytes and the functions of BAG3 in A/RI. MATERIAL/METHODS BAG3 expression in cardiomyocytes with or without puerarin pre-treatment was quantified using qRT-PCR and Western blot analysis. The effects of BAG3 on A/RI were studied by measuring the activity of lactate dehydrogenase (LDH) and creatine phosphate kinase (CPK), the concentration of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). The effects of BAG3 on autophagy and apoptosis of the cardiomyocytes after A/RI were further studied. RESULTS Puerarin significantly promoted BAG3 expression in the rat primary cardiomyocytes after A/RI. Enforced BAG3 expression presented similar effects as puerarin pre-treatment in attenuating A/RI in terms of CPK, LDH, MDA, SOD, GSH-Px, ROS generation, and cell viability. BAG3 overexpression significantly stimulated autophagy in cardiomyocytes after A/RI, which presented protective effects on A/RI in terms of cell viability and apoptosis. Autophagy inhibition partly abrogated the protective effects of BAG3. CONCLUSIONS Puerarin can directly increase BAG3 transcription and translation in cardiomyocytes after A/RI. The elevated BAG3 expression presents protective effects on A/RI at least through enhancing autophagy and reducing apoptosis, which is a novel protective mechanism of puerarin in ARI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy

MiR-497 is predicted to target anti-apoptosis gene Bcl2 and autophagy gene microtubule-associated protein 1 light chain 3 B (LC3B), but the functional consequence of miR-497 in response to anoxia/reoxygenation (AR) or ischemia/reperfusion (IR) remains unknown. This study was designed to investigate the influences of miR-497 on myocardial AR or IR injury. We noted that miR-497 was enriched in ca...

متن کامل

Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes.

Primary percutaneous coronary intervention, or thombolytic therapy, provides effective myocardial blood reconstruction in patients with acute myocardial infarction to reduce acute myocardial ischemic injury. However, reperfusion can itself induce cardiomyocyte death, termed myocardial reperfusion injury (I/R). Hypoxia/reoxygenation (H/R) induces apoptosis and excessive autophagy among cardiomyo...

متن کامل

Remifentanil Protects Human Keratinocytes against Hypoxia–Reoxygenation Injury through Activation of Autophagy

The proliferation, differentiation, and migration of keratinocytes are essential in the early stages of wound healing. Hypoxia-Reoxygenation (H/R) injury to keratinocytes can occur in various stressful environments such as surgery, trauma, and various forms of ulcers. The effects of remifentanil on human keratinocytes under hypoxia-reoxygenation have not been fully studied. Therefore, we invest...

متن کامل

Lycopene protects against apoptosis in hypoxia/reoxygenation‑induced H9C2 myocardioblast cells through increased autophagy.

Lycopene (Ly), the most common type of antioxidant in the majority of diet types, provides tolerance to ischemia/reperfusion injury. However, the underlying mechanism of the protective effects observed following Ly administration remains poorly investigated. The aim of the current study was to investigate whether Ly prevents damage to hypoxia/reoxygenation (HR)‑induced H9C2 myocardioblasts in a...

متن کامل

Clematichinenoside (AR) Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway.

Mitochondria-mediated cardiomyocyte apoptosis is involved in myocardial ischemia/reperfusion (MI/R) injury. Clematichinenoside (AR) is a triterpenoid saponin isolated from the roots of Clematis chinensis with antioxidant and anti-inflammatory cardioprotection effects against MI/R injury, yet the anti-apoptotic effect and underlying mechanisms of AR in MI/R injury remain unclear. We hypothesize ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2016